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Abstract—Ethereum as one of the largest blockchain systems
plays an important role in the distributed ledger, database sys-
tems, etc. As more and more blocks are mined, the storage burden
of Ethereum is significantly increased. The current Ethereum
system uniformly transforms all its data into key-value (KV)
items and stores them to the underlying Log-Structure Merged
tree (LSM-tree) storage engine ignoring the software semantics.
Consequently, it not only exacerbates the write amplification
effect of the storage engine but also hurts the performance of
Ethereum. In this paper, we proposed a new Ethereum-aware
storage model called Block-LSM, which significantly improves
the data synchronization of the Ethereum system. Specifically,
we first design a shared prefix scheme to transform Ethereum
data into ordered KV pairs to alleviate the key range overlaps
of different levels in the underlying LSM-tree based storage
engine. Moreover, we propose to maintain several semantic-
orientated memory buffers to isolate different kinds of Ethereum
data. To save space overhead, Block-LSM further aggregates
multiple blocks into a group and assigns the same prefix to all
KV items from the same block group. Finally, we implement
Block-LSM in the real Ethereum environment and conduct a
series of experiments. The evaluation results show that Block-
LSM significantly reduces up to 3.7 x storage write amplification
and increases throughput by 3x compared with the original
Ethereum design.

Index Terms—Ethereum, Storage Engine, KV Store

I. INTRODUCTION

Ethereum [1], as one of the most popular Blockchain
systems, has been widely deployed on various application
scenarios, including medicine [2], economics [3], Internet of
Things [4], software engineering [5], and digital assets [6],
etc. To guarantee the consistency of the Ethereum network,
each full node must synchronize all the network transaction
data to the local disk. However, as the network scales up,
its data size is becoming pretty large (so far, the amount of
data of Ethereum has reached about 800 GB [7]). Thus, the
data storage engine of Ethereum must be carefully designed
to optimize the system storage I/O consumption.

To mitigate the excessive data load of the Blockchain
systems, some works [8], [9] adopt the idea of partial storage
and propose to reduce the storage size by removing a certain
part of the block. There are some other works [10], [11], which
propos to change the smart contract structure or encoding
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approach to compress the data in blocks to reduce the storage
overhead. However, although these methods can mitigate the
storage pressure to a certain extent, they lead to information
loss, making the query process more complicated. Besides,
these methods only considered the Blockchain data structures
and ignored the in-coordination of Blockchain semantics with
its underlying storage engine.

Currently, the underlying storage engine in Ethereum uses
the write-friendly LSM-tree [12] based key-value (KV) storage
engine to maintain all their data. During the synchronization
process, the full nodes would obtain the latest blocks from the
network, uniformly transform the data into KV items based on
hash functions, and finally store them in the underlying LSM-
based storage engine. However, this straightforward approach
throws away some important Blockchain semantics, such as
the block sequence, resulting in substantial meaningless I/O
overheads in the underlying storage engine. In this paper, to the
best of our knowledge, for the first time, we propose an Ether-
aware LSM-tree based KV store by incorporating Ethereum
structure semantics with underlying storage systems.

To enable the Ether-aware approach, three challenges must
be addressed as follows:

e How to benefit from the coordination between Ethereum
and underlying storage engine?

e Which part and how to transfer the Ethereum structure
semantics to the underlying storage engine with minimum
extra transformation overhead?

e How to promise the correctness and efficiency of the query
process?

To address the above challenges, we first thoroughly analyze
the performance of Ethereum and find that Ethereum suffers
from the extremely large I/O amplification on the LSM-tree
structure during the synchronization process. According to the
observation, we propose a prefix-based (i.e., block number
related) hashing approach to transform Ethereum data to KV
items. By concatenating a prefix based on the current block
number, the lexicographical order of all Ethereum data (i.e.,
KV items after hashing) is positively related to the time when
the data is mined and written to the storage. Moreover, based
on a comprehensive analysis of the average volume of data
per block and the characteristics of underlying storage, we
propose to reduce the overhead of prefix by grouping multiple
blocks with the same prefix. Furthermore, to preserve the
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TABLE I
INSPECTING THE COMPOSITION OF ETHEREUM’S DATA.

Types Category Details KV Composition

Block Headers Block header HeaderPrefix + num + block hash ->header
Bodies Block body BodyPrefix + num + block hash ->body

Metadata | Receipts Record the transaction process | ReceiptPrefix + num + block hash ->block receipts
Difficulties A metric desctibed mine HeaderPrefix + num + block hash + TDSuffix ->td
Block number Record block hash HeaderPrefix + num + hashSuffix ->block hash
Block hash Record block number NumberPrefix + block hash ->num
TxLookupEntry | Assist to query transaction TxlookupPrefix + transaction hash ->transaction block number
Trie preimages Security PreimagePrefix + state hash ->preimage

State data | Trie nodes Record account information state hash ->state data

relationship between the Ethereum transactions and blocks, we
maintain attribute-oriented memory buffers for the correctness
and efficiency of the query process.

In summary, this paper aims to mitigate the system I/O
resource requirements during the Ethereum synchronization
process. Specifically, we propose an Ether-aware LSM-tree
based KV store, named Block-LSM, to transfer the Ethereum
data semantics to the underlying KV storage engine with min-
imal I/O overhead and correctness guarantee. We implement a
fully functional prototype of Block-LSM based on Ethereum
v1.92 [13]. Various experiments have been performed with
both real and synthesized workloads to demonstrate the effec-
tiveness of the proposed Block-LSM design. The evaluation
results show that compared with the original Ethereum, Block-
LSM significantly increases system throughput by 3x and
reduces the write amplification by 3.7x during the data
synchronization process. We have released the open-source
code of Block-LSM at https://github.com/czh-rot/Block-LSM.

The main contributions of this paper are as follows:

o We analyze the performance of Ethereum by performing
some preliminary experiments and find that the synchro-
nization process of Ethereum faces extremely large I/O
overhead due to the incorporation of Ethereum semantics
and the underlying KV storage engine.

We design a new storage engine, Block-LSM, to bridge
the semantic gap between the Ethereum data layer and
its underlying storage layer by transforming Ethereum
data to KV items with a prefix-based (i.e., block number
related) hashing approach.

We further propose a block grouping prefix design and
attribute-oriented memory buffers to minimize the KV
transformation overhead and promise to query correctly.
We implement a prototype of Block-LSM based on
Ethereum v1.92 and evaluate its effectiveness with vari-
ous real and synthesized workloads.

The rest of this paper is organized as follows. Section II
and Section III introduce the background and motivation of
this work. Section IV explains the design of Block-LSM in
detail. The implementation and evaluation results are given in
Section V. Section VI presents the conclusion.

II. BACKGROUND

In this section, we briefly introduce the background of
Ethereum basics and describe its underlying storage engine.
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A. Ethereum Basics

Ethereum as a distributed ledger stores all committed trans-
actions in a chain of blocks. New transactions are packed into
blocks with a mining process and blocks are appended to the
end of the chain. When a full node joins the Ethereum network,
the full node needs to synchronize all transaction blocks from
the main network and then can start to provide services, such
as data transfers and verifiable queries.

To serve as a full node, after synchronizing a new block
from the network, the full node first needs to replay all trans-
actions in the blocks to generate the corresponding metadata
(including Receipts, Difficulties, Block number, Block hash,
TxLookupEntry, and Trie preimages) and state data (including
external accounts and contract information). Metadata is used
for efficient data retrieval and assists in transaction queries.
State data is used to manage account information. Finally, all
the data in the full node including blocks, metadata, and state
data, are converted into 2-tuples (key, value) by several hash
functions and written to the database, as shown in Figure 1.
Table I shows the hash functions that are used to convert
different data into KV items. For example, for the metadata
“TxLookupEntry”, when transferring it to KV items, the key
is the TxlookupPrefix + hash(transaction), and the value is
the block number which the transaction is located in.

The Ethereum system contains two major types of lookups
(i.e., transaction and account lookups).

Transaction Query. The hash value of a transaction is the
unique identifier of the transaction, and users adopt the pub-
licly available transaction hash to request the corresponding
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key of the TxLookupEntry. With the TxLookupEntry, we can
further get the corresponding transaction. The query process
for a transaction follows three steps:

(1) Find the block number containing the target transaction
based on the metadata TxLookupEntry mentioned above.

(2) Calculate the block hash value according to the block
number.

(3) Read the block body from disk based on the block hash
and find the required transaction.

Account Query. The account data is stored in the state
data of the full node, which are queried through MPT (Merkle
Patricia Trie) in Ethereum. An account lookup obtains data
information by retrieving all nodes in a certain MPT path from
root to leaf.

B. LSM-tree

Ethereum uses LSM-tree as its storage engine, which is
one of the most popular design choices for persistent KV
stores [14]-[17]. The LSM-tree based KV store consists of
two components:

eMemory component: The memory component is used to
accommodate the small and random KV pairs into sequen-
tial batched write operations. It uses two in-memory sorted
skiplists (memTable and immuTable memTable) to store KV
pairs with a sorted order.

eDisk component: The disk component is divided into mul-
tiple levels. The capacity of each level increases exponentially
as the level goes deeper, and each level consists of a number
of Sort String Table (SST) files.

The KV pairs from Ethereum data synchronization are
firstly buffered in memTable. Once the memTable is full, it
will be converted into an immuTable, formatted into an SST
file, and written into the disk component. This procedure is
called flush. In the disk component, When Ly (i.e., the level
N of the disk component) reaches its size limit, the KV store
would sort and merge its keys of all SST files that overlap
with the files in the Ly . This process is called compaction,
which ensures that all files in a particular level, except Lg, do
not have key range overlap and all keys in each file is sorted.

III. MOTIVATION

In this section, based on the performance analysis for the
storage engine of Ethereum, we concluded the bottlenecks of
Ethereum, which motivates to optimize the performance of
Ethereum systems.

First, we performed some preliminary experiments to ex-
plore the efficiency of the LSM-tree based KV storage engine
for Ethereum. For the experiments, we investigated the per-
formance of different parts in Ethereum in terms of execution
time and the number of operations. As shown in Figure 2,
we separately synchronize about 1.6M, 2.3M, 3.4M, and
4.6M transaction blocks from the current Ethereum public
network, and the sizes of which are about 10GB, 20GB,
40GB, and 80GB, respectively. We collected the compaction
operations triggered during the synchronization process and
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Fig. 2. Normalized execution time for different operations and the number
of compaction operations with varying data sets during data synchronization.

also investigated breakdown execution times for different parts
of underlying storage including the memory part (shown as
“Mem”), the logging part (used for crash consistency, shown
as “Log”), compaction part (shown as “Comp”), and other part
(shown as “other™).

As shown in the figure, we normalize the total execution
time and collect the number of compaction operations during
the synchronization process for different data sets. We can
find that as the amount of synchronized data increases, the
number of compaction operations during data synchronization
increases sharply. Correspondingly, the ratio of execution time
from the compaction part also increases a lot. According to the
results, we can conclude that although Ethereum blockchain
system writes blocks in an appending manner (i.e., sequentially
write data into the underlying storage engine), the underlying
storage engine during the synchronization process suffers
the performance degradation from the compaction operations,
which consumes a large amount of bandwidth on the disk and
impedes the data write.

In LSM-tree based KV storage engine, the compaction
mechanism mainly has two functions:

« Remove the invalid data (i.e., state KV items) during the
compaction process.

o For query efficiency, the compaction mechanism is used
to guarantee the strict ordering principle of LSM-tree.

Since Ethereum is an append-only chain, thus, there should
not have update operations in the underlying storage engine.
In Ethereum, once a transaction block is verified and appended
on the chain, it will never be changed. With new transactions
are verified and executed, the relevant account balance (i.e.,
state data) would be updated. However, when transferring the
updated state data to KV items, the hash function will generate
a new KV pair for the account update, thus, it would also not
incur any KV update operation in the storage engine.

According to our analysis, the large number of compaction
operations in the LSM-tree structure is caused by the key
range overlaps of the inserting KV items. During the Ethereum
synchronization process, although the transaction blocks are
downloaded and replayed sequentially when transferring the
data to KV items, the hash functions (as shown in Table I)
abundant the sequence information in the keys. Thus, in the
underlying LSM-tree based KV storage engine, the KV items
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have to be sorted according to their hashed keys through both
time and resource-consuming compaction process to meet the
strict ordering principle.

Motivated by the above observations, in this paper, we
propose to keep the sequence information of the origi-
nal Ethereum data semantics through a prefix-based (i.e.,
block number related) hashing approach when transferring the
Ethereum data to KV items, so as to eliminate the annoying
compaction operations in the KV storage engine.

IV. BLoCck-LSM

We propose a novel scheme called Block-LSM, to bridge the
semantic gap between the Ethereum data layer and its under-
lying storage layer. Figure 3 shows the architecture overview
of Block-LSM, mainly including three function models: the
prefix-based hashing, the block group-based prefix, and the
attribute-oriented memory buffers. The prefix-based hashing is
used to transmit the Ethereum semantics (i.e., block number
related information) to the underlying storage engine to make
the insertion of KV pairs sequentially. The block group-based
prefix scheme aims to minimize the transformation overhead
during the semantics transferring process. To guarantee the
query correctness, the KV transformation of some special
metadata, such as the data used to record the mapping between
transactions and blocks (i.e., TxLookupEntry), needs to be
handled separately. The attribute-oriented memory buffers are
used to isolate the KV items of this data from other KV items,
so as to eliminate its damage to the KV insertion sequence
(broken sequence would incur extra compaction operations).

A. Prefix-based Hashing

To transfer the Ethereum block order into the underlying
transformed KV items, a straightforward method is to use the
timestamp as a prefix for each KV entry written to the disk
so that all KV entries are written sequentially. However, the
timestamp for transaction blocks can not be known in advance
before reading the content. Thus, the irregular characteristic of
the timestamp would make the query process much difficult.

As described in Section II, during the synchronization pro-
cess, when a full node downloads a transaction block from the
public Ethereum network, it would replay all the transactions
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in the block and generate the corresponding metadata and state
data. After that, all data including the transaction block, the
corresponding metadata and the state data would be transferred
into KV items according to the hash functions as shown
in Table I. In Block-LSM design, we propose to use the
transaction block number as the common prefix of the keys for
the KV items related to the specified block. The construction
method of the prefix is as follows:

Append(blocknumber, key) — value

By using this transformation approach, all the KV items re-
lated to one transaction block would be aggregated into certain
key ranges, and the KV items related to different transaction
blocks are isolated to different key ranges according to their
block number. During the synchronization process, since all
the blocks are synchronized and replayed sequentially from
the Ethereum public network, thus, the insertion sequence
of KV items belonging to different transaction blocks in the
underlying storage engine can also be reserved. As a result,
the compaction operations can be reduced efficiently.

Note that when performing a transaction query, its block
number is not known in advance. A user first needs to use
the public transaction hash to locate the metadata TxLooku-
pEntry. By checking the TxLookupEntry, we can further
get the block number and read the block content. Thus,
to guarantee the query efficiency, the transformation of the
metadata TxLookupEntry cannot adopt the proposed prefix-
based hashing method. In this work, we keep the original
transformation method for TxLookupEntry to promise the
correctness of query process in Ethereum as shown in Table L.

Moreover, during the insertion process of LSM-tree based
KV store, even though the data from the same blocks of
Ethereum use the same prefix, these data are possible to be
inserted into two adjacent SSTable files. This is because the
default size of SSTable file and memTable is fixed but the size
of KV items from blockchain systems is varied from 10B to
50KB and cannot be aligned to the SSTable file size. As a
result, two adjacent blocks will have overlapped key ranges
and thus may cause severe compaction. To avoid this effect,
we propose an SSTable alignment method to align the sizes of
SSTable and KV items, which can flexibly perform the flush
operations to ensure that all KV pairs related to the same
transaction block are always stored in the same SSTable files.

The function SSTABLE ALIGNMENT() in Algorithm 1
shows the detailed working process of our proposed prefix-
based hashing approach. In Algorithm 1, GENERATE PREFIX()
and ADD PREFIX() show the details of how to generate and
add prefix to the keys based on the transaction block number.
In the beginning, all KV pairs with the prefix are sorted
and inserted into memTable. When the capacity of memTable
reaches a predefined threshold, Block-LSM would determine
whether the current prefix is the same as the prefix of the last
written KV pair, if not, it would perform the flush operation
immediately (Line 12-14 of Algorithm 1). Otherwise, if the
memTable still has sufficient capacity, it would write the
current KV pair to the memTable (Line 17-18 of Algorithm 1).
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Alogrithm 1 : The SSTable alignment Algorithm
: function GENERATE PREFIX(Block)

prefixz := Int64ToBytes(Block.number)

: end function

: function ADD PREFIX(K,V)

if K.type is not TxLookupEntry then
key := append(prefix, key)

end if

: end function

. function SSTABLE ALIGNMENT()

12: if memTable. free <= threshold then

13: if bytes.Compare(Lastpre fiz, Currentprefiz) ! =
0) then

14: db.flushMem()

15: end if

16: end if

17: if Sizeof(Key,Value) < memTable.free then

18: writeMem(K ey,V alue)

19: else

20: db.flushMem()

21: end if

22: end function

B. Block Group-based Prefix

In the prefix-based hashing approach, by adding a block
number related prefix to all the keys, Block-LSM would
increase the bit length of the keys and increase the space
overhead. In the LSM-tree based KV stores, since we only
need to promise that the keys of the KV items of different
SSTable files do not have overlap to avoid the compaction
operations, we propose to separate transaction blocks into
different groups and make the KV items from the same group
share the same prefix (i.e., the group number) to alleviate the
extra space overhead.

With the group-based prefix, although there will be a large
number of KV pairs sharing the same prefix, these data will
be firstly buffered in memTable. If we can properly flush them
into one SSTable file, it will not incur any key range overlap
between different SSTable files and compaction operations.
Therefore, we only need to reasonably set the capacity and
threshold of the memTable in the SSTable alignment algorithm
to ensure that the KV pairs with the same prefix are flushed
to one SSTable at the same time.

For the block-based prefix scheme, since each block corre-
sponds to a prefix, the maximum value of the prefix should be
equal to the number of blocks in Ethereum. So far, the entire
Ethereum network has produced about 13 million blocks, and
thus we need to use four bytes to represent block numbers.
With block group-based prefix, since we have fewer groups,
certain space can be saved. In practice, we set the capacity of
a group to be 100 blocks, and we only need three bytes to
represent the serial number of the group.
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C. Attribute-oriented Memory Buffers

As discussed in Section IV-A, the metadata TxLookupEntry
is used to look up the transaction block number during the
query process. Thus, it can not adopt the block number related
prefix hash policy and Block-LSM adopts the original trans-
formation approach for TxLookupEntry. Therefore, the hash
values of TxLookupEntry (i.e., the key of TxLookupEntry) is
uniformly distributed. As a result, when inserting the KV items
for TxLookupEntry and the KV items for other data, these keys
would be mixed together in different SSTable files and make
the key ranges of different SSTable files have overlap. Finally,
Block-LSM would trigger many compaction operations to re-
organize these SSTable files (the evaluation results shown in
Figure 5 have demonstrated this scenario).

To avoid the disturbance, we propose to maintain differ-
ent attribute-oriented memory buffers to separately handle
special metadata KV items and other KV items (generated
with the prefix-based hashing). With the attribute-oriented
memory buffers, the KV items for TxLookupEntry and other
data are maintained in different memTables and are flushed
to their corresponding SSTable files as shown in Figure 3.
Thus, in the underlying storage engine, the SSTable files for
TxLookupEntry and other data have no key range overlap.
Due to the hash randomness, the different SSTable files for
TxLookupEntry must have key range overlap. However, the
size of TxLookupEntry is much smaller than other data. So,
Block-LSM will face a few compaction operations to compact
the KV items for TxLookupEntry in different SSTale files and
finally those compactions have slight influence on the overall
synchronization performance.

V. EVALUATION
A. Experiment Setup

Environment. We develop a full functional prototype of
Block-LSM based on Ethereum v1.92, which adopts Lev-
elDB [18] as its underlying KV storage engine. The prototype
includes 6300 lines of codes modification and is publicly ac-
cessible at https://github.com/czh-rot/Block-LSM. We deploy
Block-LSM with a testing machine equipped with Inter(R) i7-
10875 CPU @ 2.30 GHz with 8 cores, 16 GB Memory, and
1TB SN-750 NVMe SSD. The operating system is Ubuntu
18.04. For the KV storage engine settings, if not otherwise
specified, the SST file is set to 2MB and the BlockCache is
set to 200MB. We define the size of the group as 100 blocks
to run all the tests.

Workloads. To evaluate the Ethereum synchronization pro-
cess, we first use Geth to synchronize transaction blocks from
the public main chain to local disk and then replay these
transactions to the proposed Block-LSM storage engine. By
doing this, we can exclude the network influence. For gener-
ality, we adopt four groups of real workloads with different
numbers of blocks: 1.6M, 2.3M, 3.4M, and 4.6M from the
public Ethereum network, and the sizes of which are about
10GB, 20GB, 40GB and 80GB, respectively.

For the read workloads, since tracing the read requests of the
Ethereum main chain is a time lasting work (may need months
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or years) and there is no open-sourced testing data sets, thus,
in this work, we syntheses multiple read workloads following
three different distributions [19], [20] (i.e., Skewed Latest
Zipfian, Scrambled Zipfian, Normal Random) depending on
the rules of performing transactions and the characteristics
of accounts. The read workloads are generated based on the
synchronized 4.6M Ethereum blocks (the data size is 80GB)
with different distributions, which contain nearly 100 million
transactions and 10 million accounts in total, respectively.

B. Data Synchronization Performance

For the data synchronization process, we evaluate the
performance of the original Ethereum and Block-LSM in
terms of throughput, the number of compaction, and write
amplification. The results are shown in Figure 4— 7.

eThroughput: Figure 4 shows the system throughput (Thou-
sand operations per second, a.k.a, KOPS, note that an opera-
tion here means a KV insertion) of different Ethereum data
sizes during the synchronization process. We can see that
Block-LSM outperforms Ethereum across the board, and with
the data sizes varying from 10GB to 80GB, the throughput im-
provement of Block-LSM over Ethereum ranges from 23.01%
to 182.75%. More importantly, unlike Ethereum, whose data
synchronization time slows down significantly as the data set
gets larger, the throughput of Block-LSM stably keeps at a
much higher level. The reason for the throughput improvement
of Block-LSM is that by transferring the Ethereum block order
to the underlying KV storage engine, the number of time-
consuming compaction operations (which involves multiple
SSTable copies, KV item sorting, and SSTable written back)
is significantly reduced.
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eCompaction: Figure 5 shows the number of compaction
operations during the data synchronization process of Block-
LSM and the original Ethereum. From the figure, we can see
that Block-LSM efficiently eliminates most of the compaction
operations in the storage engine. As the store sizes increase,
the compaction operations slightly increase but at a much
lower level. In contrast, the original Ethereum design suffers
from a huge number of compaction operations. When the
data size increases, the number of compaction operations
increases significantly. With the data size of 80GB, the original
Ethereum has up to 9 x 10* more compaction operations
than the proposed Block-LSM. Note that Block-LSM does
not completely remove all compaction operations, and the
reason for this is that to promise the query correctness and
efficiency, the data structure TxLookupEntry of Ethereum is
still transferred to KV items by hashing. Thus, when flushing
those KV items to disk, they are not ordered and may incur
some compaction operations.

eWrite Amplification: Figure 6 shows the write amplifi-
cation coefficient (WA Coef) for Ethereum and Block-LSM.
As shown in the figure, as the size of the data set increases,
the WA Coef of Ethereum ranges from 5.12 to 9.24, which
presents an increasing trend. However, benefiting from the
elimination of compaction operations, the WA Coef of Block-
LSM is about 2 and is relatively stable for the different data
sets. The extra write amplification for Block-LSM is mainly
caused by the Write-Ahead-Logging (WAL) mechanism of the
underlying KV storage engine (each KV pair must first be
written to a log file before being inserted into the memTable).

Figure 7 shows the distribution of the time spent in different
components during each run of the test between Ethereum and
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Block-LSM. As shown in figure, compared to the Ethereum,
compaction operations in Block-LSM account for only a
small part of the total time, for the reasons explained in
Figure 5. In addition, since the inserted KV pairs are initially
ordered, which avoids the sort operation of the memTable, the
execution time of memTable is also significantly reduced. In
summary, compaction operations in Block-LSM are no longer
a bottleneck that limits system performance and introduces
write overhead.

C. Breakdown Analysis

In this section, to investigate influence of each proposed
scheme on write performance, we superpose each scheme one
by one until it becomes Block-LSM as described below:

Ethereum (Eth): represents the original Ethereum.
Prefix (P): stands for our design that only adopts the
block number related prefix hashing approach.
Prefix+Align (PA): stands for our design with both block
number related prefix hashing and SSTable alignment.
Prefix+Align+Group (PAG): stands for our design with
block group related prefix hashing and the SSTable align-
ment scheme.

Block-LSM: is the design that includes all the proposed
policies.

Figure 8 shows the throughput of these implementations
with varied Ethereum data sizes. As shown in the figure,
Block-LSM achieves the highest throughput improvement
over the original Ethereum among all these implementations,
and Prefix has the lowest of that. By integrating attributed-
oriented memory mechanism with block-based prefix, the
write throughput also increases for all data sets.

By adopting the block number related prefix hashing, most
of the transferred KV items are inserted into the KV storage
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engine orderly, and the compaction number has been reduced
a lot (about 35%—74%) compared with the original Ethereum.
However, there are still many compaction operations due to the
alignment issue and the scatter hashed T'x LookupEntry KV
items. By incorporating the alignment design, the compaction
number is further reduced, but the percentage is very small
(i.e., 3%—6% compared with Prefix). The block group-based
prefix policy is used to mitigate the space overhead introduced
by the extra key prefixes and it would not contribute to
the compaction reduction. Through the evaluation results, we
can observe that it also does not introduce any side effect
to the compaction process. Note that compared with the
Prefiz + Align implementation, Block-LSM further reduces
the compaction operations significantly. This indicates that the
scatter hashed Tz LookupEntry KV items severely influence
the stability of the underlying KV storage LSM structure and
our attributed-oriented memory buffer design can fundamen-
tally solve this problem.

D. Read Performance

We investigate the read performance of Ethereum and
Block-LSM under various workloads. The metric for the read
performance is Lookup Operations Second (LOPS). Note that
an operation here means an account or a transaction search
rather than a KV pair query.

Figure 9 shows the read performance results for Ethereum
and Block-LSM under the workloads with three distributions.
As shown in figure, despite our block-based prefix scheme
increasing the length of the KV pairs queried, there is no
significant difference in performance between Ethereum and
Block-LSM across all workloads, with the performance gap
consistently within the 3%. The reason is as follows.

Ethereum’s read workload has a characteristic: A request in
Ethereum tends to query multiple KV entries with the same
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TABLE II
CPU USAGE OF DIFFERENT WRITE WORKLOADS.
Data Sets 10G 20G 40G 80G
Ethereum 1143% 11.15% 11.13% 11.82%
Block-LSM | 9.18% 9.21% 8.90% 9.86%

type in succession and these entries are generated by a block.
Therefore, data generated from the same block is clustered in
adjacent locations on the disk due to the prefix, which has
a positive effect on querying. The two factors balance each
other, so the read performance of Block-LSM does not show
significant degradation.

E. Overhead

In this section, we analyze the overhead of Block-LSM from
two aspects: computation overhead and space overhead.

eComputation Overhead. In Block-LSM, when perform-
ing the prefix-based hashing and the SSTable alignment,
extra computation resources would be needed. Therefore, to
compare the computation resource consumption, we record
the system CPU utilization during the data synchronization
process of the original Ethereum and Block-LSM with various
data sizes. The results are summarized in Table II.

As shown in the table, though Block-LSM introduces extra
computation overhead, its average CPU utilization is slightly
lower than the original Ethereum design. This is because
Block-LSM significantly reduces the system compaction oper-
ations (which is both I/O and computation hungry) and thus the
overall CPU utilization with Block-LSM is slightly decreased.

eSpace Overhead. The block number related prefix hashing
approach increases the length of the keys of transferred KV
pairs, which makes Block-LSM require more disk space. To
evaluate the space overhead, we collected the required storage
space of the original Ethereum and Block-LSM. With the
Ethereum data sizes vary from 10GB to 80GB, the space
overhead of Block-LSM with block-based prefix ranges from
2.43% to 2.76%, and space overhead of the block group-based
prefix ranges from 1.82% to 2.07%. Considering the perfor-
mance improvement, especially for the data synchronization,
we claim the space overhead is acceptable for Block-LSM.

VI. CONCLUSION

In this paper, we propose Block-LSM, an Ethereum-aware
LSM-tree based KV store to optimize the system I/O re-
source requirements. Block-LSM achieves its design goal by
introducing the block number related prefix hashing to make
the insertion of KV pairs sequentially, a block group related
prefix hashing to minimize the transformation overhead, an
attribute-oriented memory mechanism to avoid the disturbance
between various KV items. We implement a fully functional
prototype of Block-LSM based on Ethereum v1.92 and var-
ious experiments have been performed. Our experimental
results show that Block-LSM achieves significant improve-
ment. The open-source code of Block-LSM is available at
https://github.com/czh-rot/Block-LSM.
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